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ABSTRACT

Classification trees and neural networks are widely used individually, yet little is
known about the effect of combining these two techniques. Earlier work has shown that
using k-nearest neighbor (k-NN) inside the leaves of a tree can increase classification
accuracy. Since neural networks are so powerful, we apply neural networks instead of the
k-NN method inside the leaves of the tree.

This thesis studies the performance of this composite classifier. It is compared to
the tree-structured classifier and the neural network classifier. We use commonly
available data sets in this application and compare the results to those generated by other
geherally used classifiers.

Compared to the results of the other two classifiers in this thesis, composite
classifier always gives the lowest cross-validated misclassification error rates in these

data sets. Its excellent performance tells us that it is worth further investigation.
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THESIS DISCLAIMER
The reader is cautioned that the computer programs developed in this research
may not have been conducted for all cases of interest. While every effort has been made,
within the time available, to ensure that the programs are free of computational and logic
errors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.
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EXCECUTIVE SUMMARY

The classification tree is one of the widely used techniques in classification. Like
many other powerful data analytic tools, such as factor analysis and nonmetric scaling,
trees were developed in order to cope with actual classification problems based on data.

Like classification trees, the technique of neural networks is also a widely used
tool in the literature of statistics. Neural networks, which arise from a variety of sources,
have uses ranging from understanding and emulating the human brain, to duplicating
human abilities such as speech and the command of language in many disciplines
involving pattern recognition, modeling, and prediction (Rohwer, Wynne-Jones, &
‘Wysotzki, 1994). Neural networks are often used as classifiers.

Although classification trees and neural networks are widely used individually,
little is known about the effect of combining these two techniques. Earlier work at Naval
Postgraduate School has shown that using k-nearest neighbor (k-NN) inside the leaves of
a tree can increase classification accuracy (Karo, 1998). Since neural networks are so
powerful, we apply neural networks instead of the k-NN method inside the leaves of the
tree.

This thesis studies the performance of this composite classifier. We use
commonly available data sets in this application and compare the results to those
generated by other generally used classifiers.

Compared to the results of the other two classifiers in this thesis, the composite
classifier always gives the lowest cross-validated misclassification error rates in the

tested data sets. Its excellent performance tells us that it is worth further investigation.
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I. INTRODUCTION

A. BACKGROUND

1. Classification Tree

The classification tree is one of the widely used techniques in classification. Like
many other powerful data analytic tools, such as factor analysis and nonmetric scaling,
trees were developed to cope with actual classification problems based on data. Morgan
and Sonquist (1963) are the first to work with trees in regression. Breiman and Friedman
(1984) use tree methods in classification to deal with actual statistical problems. The
problem of classification is the problem of finding a way to assign a new object to one of
a number of possible groups. The basic purpose of a classification study, generally
speaking, can be either to produce an accurate classifier or to uncover the predictive
structure of the problem.

2. Neural Networks

As with classification trees, the technique of neural networks is also one of the
widely used tools in the literature of statistics. Neural networks, which arise from a
variety of sources, have uses ranging from understanding and emulating the human brain,
to duplicating human abilities, such as speech and the command of language in many
disciplines involving pattern recognition, modeling, and prediction (Rohwer, Wynne-
Jones, & Wysotzki, 1994). Neural networks are often used as classifiers. Fisher (1936)
introduces linear discriminants as a statistical procedure for classification, from which
McCulloch & Pitts (1943) propose the McCulloch-Piits neuron. In this process, a
weighted sum of inputs is acted on by a non-linear function called the activation function.

Hebb (1949) notes that if a network of neurons responds in a desirable way to a given

1



input, then the weights should be adjusted to increase the probability of a similar
response to similar inputs in the future. Through this work, the functionality of neural
networks as determined by the weights of the connections between neurons is finally

established.

B. INITIAL CONCEPT

1. Knn-in-leaf Application

The initial concept of this thesis is motivated by a similar application due to Karo
(1998). He introduces a new technique, Knn-in-leaf, to the field of classification. Knn-in-
leaf is based on Nearest-Neighbor classification. The technique shows an improvement
in classification accuracy by about 1 - 3% when k-Nearest Neighbor (k-NN)
classification is conducted inside the leaves of a tree. In short, Karo (1998) shows that
applying another classifier inside the leaves of the tree produces a “composite” classifier
that can have higher accuracy.

2. Neural Networks inside the Leaves of a Classification Tree
(Nnet-in-leaf)

Although classification and neural networks are extensively used individually,
little 1s knownabout the effect of combining these two techniques. Since the nearest
neighbor method helps inside the leaves of the tree and since neural networks are so
powerful, we would like to apply neural networks instead of the k-NN method inside the
leaves of the tree.

Our purpose in building this composite is to determine whether it can reduce
misclassification rates. We combine the two classifiers in this fashion. A classification

tree, produced through binary splits, produces a certain number of terminal nodes or



leaves. Each leaf contains a subset of the original data (a “sub-data set”). A neural
network classifier is then constructed on each sub-data set separately.

This thesis will measure the behavior of neural networks inside the leaves of a
classification tree and will study the performance of this composite classifier. We will use
commonly available data sets in this application and compare the results to those

generated by other generally used classifiers.

C. PURPOSE OF THIS THESIS

The intention of this thesis is to propose the new Nnet-in-leaf algorithm and study
the performance of this composite classifier. This thesis does not have one specific
application; the general improvement in classifier accuracy is a topic of interest in many

of the applications to the classification trees and neural networks.

D. STRUCTURE OF THIS THESIS

Chapter II discusses the existing tree-structured classifier and the neural network
classifier. A graphical example for each classifier is also presented. In the tree-structured
classifier section, a self-contained tree algorithm “whole.tree” introduces general tree
methods, including how to make a tree, to cross-validate the tree, and to prune it. In the
neural network classifier section, a self-contained neural network algorithm “whole.nnet”
introduces the neural network methods and prediction methods.

Chapter III introduces the composite classifier made up of the classification tree
and the neural network. Its pseudo-code algorithm is provided to enable readers to
understand how the Nnet-in-leaf algorithm performs. The description of the data sets

used in this thesis is also given in this chapter.



Chapter IV contains results and discussion. The results are given by data set, with
each of the baseline and new methods being ranked in their performance. The Measure
of Performance (MOP) is simply the misclassification rate, although other aspects of
classifier performance are also discussed.

Finally, Chapter V will raise issues for further investigation and present summary
conclusions. Two appendices contain raw results and the S-Plus code used to obtain the

results.



II. EXISTING TECHNIQUES FOR CLASSIFICATION TREES
AND NEURAL NETWORKS

A. CLASSIFICATION TREES

1.  Tree-Structured Classifiers

Tree-structured classifiers, which are based on a series of binary decisions, are
constructed by repeatedly splitting subsets of the original data set into two descendant
subsets. Differences in techniques of the tree construction arise from different choices of
splitting rules and pruning rules.

For splitting a leaf, there is a set of features from which to construct splitting

 attributes. For a binary feature, we will obviously consider only the one possible split on

that feature (for example, male versus female). For categorical features with L > 2 levels,
we will consider an L-way split, or consider binary splits dividing the levels into two
groups (Rohwer R., Wynne-Jones M., & Wysotzki F., 1994).

The second problem is “pruning.” For a big data set, the number of rooted
subtrees of a binary tree is very large, and there is no good stopping rule. In order not to
split “too far,” we prune the tree. Breiman et al. (1984) introduces the best-known
method for tree pruning, “cost-complexity pruning.” This pruning method uses the
deviance or number of misclassification of a tree penalized by the number of leaves.

In the following section, the method of whole.tree is introduced as a part of the
main algorithm the nnet.in.leaf method. The main algorithm will be introduced in the
next chapter.

2.  Whole.tree Algorithm

The whole.tree algorithm is an extension of the tree-structured classifier. With a

view to obtaining a tree’s optimal number of terminal nodes and misclassification error
5




rate, this algorithm works sequentially with several tree-related functions. In this thesis
we used the S-Plus (1999) statistical package. The S-Plus functions used in this method
are tree(), cv.tree(), and prune.tree().
The pseudo-code of the whole.tree algorithm is presented here:
Inputs: A given data set (a factor response with two or more levels, plus some continuous
or factor predictors)
Output: {
Classification tree of the data set:
Data.tree € Build a classification tree using the response
Data.cv € use cross-validation to find the optimal number of terminal nodes, that
is, the number with the lowest deviance
Data.prune € prune the Data.tree to the optimal number found in Data.cv
Leaves < identify the the sub-data set within each leaf of the optimal tree }

3.  Example of Classification Tree

A simple example of using the whole.tree method defined in the previous section
is given here. The example is based on the wine data, which has 178 observations
consisting of three classes, and in which 11 out of 13 independent variables are
continuous and the other two are integers. This data has been used and cited (for
example, in Kobayashi’s Sensitivity Analysis of the Topology of Classification Trees
(1999)) as an example many times. It is common to justify the appropriateness and
usability of an algorithm by using data sets that are familiar in the classification field. A
detailed description of this data is given in the next chapter. In Figure 1, the rectangular

boxes in the diagram indicate terminal nodes while ellipses indicate non-terminal nodes.



The number inside each terminal node indicates to which class an observation falling into
that node is assigned. The numbers under the terminal node indicates the number of
observations misclassified and the total number of observations in that node. Figure 1 is a

classification tree of the original wine data set.

Figure 1: Original Classification Tree from Wine Data Set

Under each terminal node, there are two numbers. The
number on the right side represents the total number of
observations in that node; the number on the left is the number of
observations misclassified. The number inside each terminal node

‘ indicates to which class an observation falling into that node is

| assigned.
For this classification tree, the misclassification error rate is 1.685% and the
number of terminal nodes is 7. The misclassification error rate is low: only 3 out of 178

observations are misclassified. However, we can often obtain very low misclassification

7




rates if we produce very large trees. Cross-validation lets us detect this over-fitting. In
Figure 2, the cross-validation curve (of tree size versus cross-validated deviance) shows
that the numbers of nodes with the lowest deviance are 4 and 5. Therefore, we are
convinced that the original classification tree needs to be pruned to guard against

overfitting.

160.0 120.0 56.0 250 5.0 48 -Int
| 1

350 400
| 1

300
1

deviance
250
1

200
1

150
|

-

Figure 2: Cross-Validation Plot for the Original Tree
This plot shows the cross-validated deviance as a function of

tree size. The tree is pruned to the size for which this is a minimum -
here, four nodes.

Figure 3 shows that the pruned tree has 4 terminal nodes with a misclassification
error rate 3.37% (6 / 178). The number of the terminal nodes is smaller than that of the
original data tree, but the misclassification error rate has gone up from 1.685% to 3.37%.
Although this is a good result, our approach is to determine whether the misclassification

rates can be reduced.



2 3 2 1

0/13 1/49 1/54 4/62

Figure 3: Pruned Classification Tree from Wine Data Set

Based on the same splitting attributes, the pruned tree
snipped off the leaves on the “lower” part of the original tree. It
creates four new leaves. Because there are some splits in these
terminal nodes, the number of misclassified observations
increases.

B. NEURAL NETWORKS

1. Neural Network Classifiers

There are many neural network classifiers used in such different fields as machine
learning, pattern recognition, and statistical classification. In this thesis, we restrict
attention to the most commonly used network for classification, the feed-forward neural
network. This classification technique produces a multi-layer network of perceptrons

with one hidden layer. This neural network classifier generally has an input layer and an




output layer, while the number of hidden layers can be one or more. We consider only the
case of one hidden layer.

In neural network classification, generally speaking, there are three parameters
governing the algorithm that chooses the weights w;;. The first is the number of nodes in
the hidden layer, the second is the weight decay, and the third is the random seed. There
is no specific rule for the choice of the number of hidden nodes; therefore, we usually
select a number no greater than the number of the attﬁbutes of the data set. This results in
a reasonable number of weights for the feed-forward calculation; too many hidden units
will cause a lot of calculation and may not obtain a better result. For weight decay, the
general tendency is that the bigger the weight decay, the faster the convergence. Hinton
(1986) reports that weight decay modifies a neural network algorithm to reduce the
magnitude of the weights at each step. This only makes sense if the inputs and outputs
have been rescaled to the range [0, 1] to be comparable to the outputs of the hidden units.
However, the rapid convergence may overlook the minimum point that yields the
smallest error rate. The Forensic glass data example conducted by Rohwer R., Wynne-
Jones M., & Wysotzki F. (1994) reported this tendency of weight decay. In that example,
they use hidden units of two, four, and eight nodes and the weight decays were 0.01,
0.001, and 0.0001. The error rates for two hidden units are 31.8%, 30.4%, and 30.8%. For
four hidden units, thQ error rates are 29.9%, 26.2%, and 23.8%; for eight hidden units
they are 29.9%, 26.2%, and 27.1%. The results obviously reinforce the concept just
mentioned. As a result, we set the weight decay to 5*10™ to try to make sure the

algorithm converges. Accompanying weight decay, a random seed gives the neural

10



network classifier a starting point (Ripley, 1996). We study the effect of varying these

three parameters in the example of the next section as well as in the next chapter.

2.  Whole.nnet Algorithm

The whole.nnet algorithm is a neural network classifier. For the purpose of
obtaining a data set’s misclassification error rate, this algorithm is designed sequentially
with the neural network function and other related functions. The functions used in this
method are nnet(), predict(), and table().

The pseudo-code of the whole.nnet algorithm:

Inputs: original: A given data set (a factor response with two or more levels);
n: number of nodes in the hidden layer
seed: if supplied, pass to set.seed()
Output: {
Neural networks of the data set :

Training.set € sample(data.set)

Data.nnet €< build neural network on response, using seed, n hidden nodes (The
other parameters not mentioned in the function are set to be
defaults.)

Prediction € Predict test set with the output of the nnet function, Data.nnet.

Table € Make a table for the prediction

Correct.number € Sum up the number of correct classifications found on the

- diagonal of this table
Total.number € sum up total numbers on the table

Error.rate € (Total.number — Correct.number) / Total.number

11




Report the result of the error rate }

3. Example of Neural Networks

In terms of neural network classifiers, a simple example is given here with the

training and test set of 119 and 59 observations respectively.

Pro
oD

Hue

Coin

Proa :S

Nonf

Flav
Tot
Mag
Alcs

Ash
Mali
Alc

Observed

Type 1 Type 2
Type 1 20 0
Predicted Type 2 0 21

T™vype 3 0 0

Giving an error rate of 0.01695

Figure 4: Neural Networks and Confusion Table from Wine Data Set

The matrix is a confusion table, based on the network. The numbers on
the diagonal represent the number of correct classifications. Numbers other than
the numbers on the diagonal are the numbers of misclassification errors. The error
rate of the wine data set using this whole.nnet method is based on the 7 hidden
nodes and a seed of 100.
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whole.nnet method defined in the previous section. The example is based on the sample
data we use in the previous section of this chapter, the wine data set, which has 178
observations consisting of three classes, and in which 11 out of 13 independent variables

are continuous and the other 2 are integers. The 178 observations are divided into a
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The error rate we obtain from the whole.nnet method is 1.695%, which is quite
close to the error rate of 1.685% from whole.tree method. In Figure 4 the 13 nodes in the
input layer represent the 13 independent variables of the wine data set. In the middle of
this figure is the hidden layer of seven nodes, a number supplied by us. The output layer
has three nodes representing the three classes in this data to specify the neural network
classification. In this example, the number of observations of the training set is two-thirds
of the original wine.1 data set, and the test set is one-third. The report tells us that the
error rate is one out of 59. The number, 59, is the sum of the numbers on the diagonal of
the confusion table, representing the total number of the test set. The number, one, is the
number of misclassification error, which is not on the diagonal of the confuse table.

In order to see the variation on the error rates caused by the number of nodes in
the hidden layer, we set the number to 13, the same as the number of the independent
variables of the wine data, with the same random seed 100. The error rate increases to
5.1%. When we permit only 2 nodes in the hidden layer and maintain Ithe random seed of
100, the result of the error rate is even higher than that with 13 nodes in the hidden layer.

We vary the number of nodes in the hidden layer, from 1 to 30 (see Appendix C),
with a fixed random number seed. The error rates range from1.7% to 11.86% with 17 out
of 30 giving the minimum error rate of 1.7%.

When we apply the neural network classifier within the leaves of a classification
tree, we hopé, of course, to see the minimum error rate instead of the average error rate.
Based on this idea, we use a loop over the number of nodes in the hidden layer as well as
looping over a set of random seeds in the nnet.in.leaf method to be discussed in the next

chapter.
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II1. DEFINITION OF NEURAL NETWORKS INSIDE THE LEAVES

OF A CLASSIFICATION TREE (NNET.IN.LEAF)

A. PROPOSED NEW CLASSIFICATION RULE

The combination of classification trees and neural networks is a new direction in

this literature, although both have been commonly used in the field of classification for a
long time. The tree-structured classifier is a very successful classification application, as
are neural networks. The goal of this composite classifier is to create a more reliable
classification method.

1. Definition

A nn.in.Jeaf method is an algorithm in which a neural network classifier is used
within the leaves of a classification tree. When a data set is classified with a tree-
structured classifier, the result is a set of terminal nodes, a sub-data set within each
terminal node, and thevoverall misclassification error rate. The tree-structured classifier
error rate measures how pure the leaves are. To make the leaves more accurate, the neural
network classifier then operates on the data within each leaf. The overall error rate from
all neural networks is the.error rate of this nnet.in.leaf method.

2. Preprocessing Concerns

Before a data set is classified with this method, some preprocessing is necessary.
With the use of S-Plus software and the format of this nnet.in.leaf algorithm, the

following has to be done prior to classification with our software.
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a. Arbitrary Position of Response of a Data Set

Each data set has its own particular format. Because of the way the algorithm is

coded and run, the response is required to be the first column of the data.

b. Random Seed and Number of Nodes in the Hidden Layer

In neural networks, random seeds and number of nodes in the hidden layer are
two important inputs. Different combinations of these two inputs result in different error
rates. Therefore, proper selection of these two inputs is time-consuming and demanding.

The nnet algorithm uses a random seed to select starting values for the weights.
The user must also specify the number of nodes in the hidden layer (the number is also
called “network size”). This number is usually taken to be less than the number of levels
of the response variable. In the nnet.inleaf algorithm, the number of levels of the
response in sub-data sets is never larger than that in the original data set. The algorithm
tries every combination from a set of network sizes and a set of random seeds; when

these sets are large, the algorithm will run slowly or crash.

c. Factor Response and Its Levels

This algorithm deals only with data sets which have factor responses. If the factor
response has two levels, the nnet method of Ripley (1999) produces one output and
entropy fit, and a number of outputs equal to the number of classes and a softmax output
stage for more levels.

3. Cross-Validation
In the nnet.in.leaf algorithm, two phases of cross-validation have been used to
evaluate the method. These are discussed in detail so that the terminology as it is used

later is clear. Phase one is performed within the classification tree. It cross-validates the
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tree sequence obtained by pruning a tree by partitioning the original data set into a
number of distinct sub-data sets, fitting subtree sequences to these, and using a sub-data
set previously held out to evaluate the sequence. In other words, at the beginning for a
daté set running thrqugh this algorithm, a tree is created with a number of terminal nodes
or leaves. The number of terminal nodes may or may not be the optimal number that
gives the lowest deviance. The function of the cross-validation is to find this lowest
deviance so as to find the tree with an optimal number of terminal nodes; the tree is then
pruned to this size.

Phase two is conducted within the neural networks part of the nnet.in.leaf
algorithm. When the optimal number of terminal nodes and the sub-data sets within each
node are obtained, each sub-data set is broken randomly into a training set and a test set.
After the output of the nnet method in the nnet.in.leaf is obtained, the next step is a
prediction of the test set and a computation of the error rate.

4. Pseudo-Code of Algorithm
A basic pseudo-code of the algorithm to find sub-data sets within each terminal
node and to find the overall misclassification rate is as follows:
Inputs:
A given data set (a factor response with two or more levels) : data.set
A set of numbers of nodes in the hidden layer : Ni
A set of random seeds for Neural networks : Sj
Output: {
Classification tree of the data set :

Data.tree € build a classification tree
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Data.cv € use cross-validation to find the optimal number of terminal nodes with
the lowest deviance
Data.prune € prune the Data.tree with the optimal number found in the Data.cv
Leaves € identify the the sub-data set within each leaf of the tree with optimal
number of terminal nodes
Sub.leaf € the sub-data set within a leaf of the tree
For each leaf {
Scale Sub.leaf so that each prediction has mean 0 and standard deviation 1
For each number of nodes in the hidden layer (Ni) {
TotalCount € set to zero
ErrorCount € set to zero
TotalErrorRate € set to zero
Training.set € sample(sub.leaf) // Random sample of Sub.leaf, each
observation having probability 0.67 of being on the sample
Nnet.output € build neural network on Training.set
For each value of random seed (Sj) {
Pred € predict the test set (using Nnet.output)
TotalCount € TotalCount + number of test set observations
ErrorCount € ErrorCount + number of test set errors
}// End for a single leaf with a single number of nodes in hidden layer
}// End for a single leaf
TotalErrorRate € ErrorCount / TotalCount

} // End for the calculation of the nnet function
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return TotalErrorRate, the misclassification error rate of nnet.in.leaf

B. TEST METHODOLGY

1. Assumptions

The major assumption made for the nnet.in.leaf methodology in this thesis is that
the efficiency of the method is not to be considered. That is, the only Measure of
Effectiveness for the algorithm is its ability to improve the accuracy of the classifications.
It is assumed that if the method has the potential for further investigation then its
application to data sets with numeric responses can be developed.

2. Data

The data sets used for this algorithm are taken from the UC Irvine Machine
Learning Repository (Merz and Murphy, 1996). For simplicity the data sets are selected

according to the following criteria:

1. Factor response for this algorithm
2. No missing data
3. A mid-sized to large data set, in the range of 150-20,000 items

The data sets which are used in this thesis are described below. To distinguish the
original data sets from those used in this algorithm, those data sets which have “.1”
attached to the end of that single word name in bold at the start of each paragraph are
reformatted by relocating their factor responses on the first column in the data frame.
Each set is described in sufficient detail to understand the purpose of the classification.

Where other results (i.e. misclassification rates reported in UCIrvine Machine Learning
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Repository as well as those from re-trails of classification trees and neural networks in

this thesis) are known, they are also given here.

A summary of the data sets used is given in the following table:

Data name Classes Cases Attributes
a iris.1 3 150 4
b wine.1 3 178 13
c glass.1 6 214 9
d vowel.1 11 990 11
e letter.1 26 20000 16
f sonar. 1 2 208 60
g diabetes. 1 2 768 8

Table 1: A Summary of Data Sets with Respective Numbers of

~ Classes, Cases and Afttributes

a. iris.1

This data set is a copy of the original data set iris, made famous by Fisher
(1936), and is built into S-Plus. The data set consists of measurements on 150 flowers,
50 from each of 3 iris species Setosa, Versicolor, and Virginica. The four continuous
attributes are sepal length and width, and petal length and width.

b. wine.1

This wine.1 data set duplicates the wine recognition data set, which comes
from a chemical analysis of wines grown in a particular region in Italy. The data consist
of 178 cases: 59 of class-1 wines, 71 of class-2 wines and 48 of class-3 wines. Each case
is composed of thirteen continuous attributes measuring the chemical properties of the
wines. They are 1) Alcohol, 2) Malic acid, 3) Ash, 4) Alkalinity of ash, 5) Magnesium,

6) Total phenols, 7) Flavanoids, 8) Nonflavanoid phenols, 9) Proanthocyanins, 10) Color
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intensity, 11) Hue, 12) OD280/0D315 of diluted wines and 13) Proline. The data are
downloaded from the UC Irvine Data Repository.

c. glass.1

The glass.1 data set is a copy of the original glass data set, which is
downloaded from the UC Irvine Data Repository. The data consist of 214 cases
containing seven classes and nine continuous attributes. The class distribution is 70 float-
processed building window glasses, 17 float-processed vehicle window glasses, 76 non-
float-processed building window glasses, zero non-float-processed vehicle windows, 13
containers, 9 tableware items and 29 headlamps. All attributes are continuous. They are
Refractive index, Sodium, Magnesium, Aluminum, Silicon, Potassium, Calcium, Barium,
and Iron.

d. vowel.1

The vowel.1 data set is a copy of the original vowel recognition data set,
which is also downloaded from the UC Irvine Data Repository. The data consist of 990
cases containing eleven classes and eleven integer attributes. This data set could be seen
as a three dimensional array: speaker, vowel, and input. The speakers are indexed by
integers 0-89. (Actually, there are fifteen individual speakers, each saying each vowel six
times.) The vowels are indexed by integers 0-10 referring to sounds labeled “i”, “I”, “E”,
“A”, far”, “Y”, “07, “c”, “U”, “u”, and “3:”. For each utterance, there are ten floating-
point input values, with array indices 0-9.

e. letter.1
This letter.1 data set duplicates the letter recognition data set from the

UC Irvine Data Repository. The objective is to identify each of a large number of black-
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and-white rectangular pixel displays as one of the 26 capital letters in the English
alphabet. The character images were based on 20 different fonts and each letter within
these 20 fonts was randomly distorted to produce a file of 20,000 unique stimuli. Each
stimulus was converted into 16 primitive numerical attributes (statistical moments and
edge counts, like, for example, the average of xzy) which were then scaled to fit into a
range of integer values from 0 through 15.

f Sonar.1

This is the data set used by Gorman and Sejnowski (1988) in their study of
the classification of sonar signals using a neural network. The task is to discriminate
between sonar signals bounced off a metal cylinder and those bounced off a roughly
cylindrical rock. The data set contains 208 cases of which 111 cases are obtained by
bouncing sonar signals off a metal cylinder at various angles and under various
conditions, and of which 97 cases are obtained by bouncing signals off of roughly
cylindrical rocks under similar conditions. The transmitted sonar signal is a frequency-
modulated chirp, rising in frequency. The data set contains signals obtained from a
variety of different aspect angles, spanning 90‘ degrees for the cylinder and 180 degrees
for the rock. There are two classes, and each case is a set of 60 numbers in the range 0.0
to 1.0. This data set is also downloaded from the UC Irvine Data Repository.

g Diabetes.1

The data set of diabetes.1 is a copy of the Pima Indians Diabetes
bDatabase. This database is developed by the National Institute of Diabetes and Digestive
and Kidney Diseases and downloaded from the UC Irvine Data Repository. The data

contains measurements of 8 attributes from Pima Indian (near Phoenix, Arizona) women

22




aged over 21 and a classification, 2 classes, as to whether or not they have diabetes. The
data set contains 768 observations of which 500 are class 0, no diabetes, and 268 cases
are class 1‘, having diabetes. The eight attributes are numeric and are as follows:
e number of pregnancies
* plasma glucose concentration after a two-hour oral glucose tolerance test
e diastolic blood pressure
e triceps skin fold thickness
e two-hour serum insulin
* body mass index (weight in kg/(height in m)/2)
e diabetes pedigree function
® age
This data set has been well studied, with the first reported use being by Smith, et al.
(1988) using their ADAP routine.
3. S-Plus Code and Functions
All algorithms were coded in the S Version 3 language, in S-Plus 2000. S-PLUS
2000 is a major upgrade of S-PLUS, built on the core S Version 3 language from Lucent
Technologies used in S-PLUS 4.5 and earlier releases of S-PLUS for Windows with

classification functions written by Venables and Ripley (1997).
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IV. RESULTS AND DISCUSSION

A. PRELIMINARIES

This chapter will present results and discussion for each of the data sets examined
in the nnet.in.leaf method along with the other two classification methods, whole.tree and
whole.nnet. The whole.tree and whole.nnet methods produce the baseline
misclassification rates. (More detailed results are in Appendix B). Where other results for
these data sets are available from the literature, these will be used to see how the
nnet.in.leaf method performs compared to the results of other investigations. All results
here will be expressed as misclassification percentages with the raw number misclassified
and other data set details such as size in the appendix. Also Appendix B contains details
on the optimal size of the trees used, the random seeds picked, the threshold of the
prediction, the number of nodes in the hidden layer, the weight decay and scaling used,
and so on.

1. Data Set Types

In order to make the distinction of the names of the data sets used in this thesis
from their original names, those data sets used in this thesis have been renamed by adding
“.17 to the end ’of the name. These date sets differ from the original only in that the
response is moved to the first column. Data set sonar.1 and diabetes.1 each have two
classes. The rest have more; for example, iris.1 has 3 levels and letter.1 has 26 levels.

Finally, it should be noted that some data sets respond well to scaling of the
variables. By standardizing each variable to have a mean of 0 and a standard deviaiion of
1 the influences of individual variables are equalized. In some dafa sets scaleing made no

difference. Results are also reported for each data set with the data scaled.
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B. RESULTS

Misclassification error rates are given with the reports of each data set below.
Each data report consists of three parts: Classification tree error rates (from whole.tree),
Neural network misclassification error rates (from whole.nnet), and nnet.in.leaf
misclassification error rates. Detailed results are shown in the Appendix B. Prior to an
inspection of the results of the main method of nnet.in.leaf algorithm, two important
points need to be stated. First of all is the stability of the misclassification error rate of
tree-structured classifiers. Generally, tree-structured classifiers work quite well for most
of the data sets. They often give consistent results in the way of binary splitting. But for
some data sets, one with a 2-class response and one with a response having more than 40
classes, the tree-structured classifiers perform unpredictably. We will see these results
later. To find out the usability of a classifier, the data set is usually split into two parts, a
training set and a test set, and examined by the method of whole.tree.

The second benchmark is a neural network classifier. The whole.nnet method uses
a training set and a test set for cross-validation and prediction. The misclassification error
rates reported from the neural network classifier are generally smaller than those from
tree-structured classifiers, when the number of nodes in the hidden layer and the number
of random seeds are appropriately picked.

In the nnetin.leaf method, the cross-validation by using three for-loops is
intended to find the minimum error rates. These three for-loops are over the number of
optimal leaves, a vector of numbers of nodes in the hidden layer, and a vector of random

seeds.
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1. IRIS.1 DATA

Figure 5, the cross-validation plot of the iris.1 classification tree, shows the
different values of deviance for each number of terminal nodes. The lowest points on the
curve (corresponding to four and five leaves) are the optimal sizes of the trees; either one
of them could be chosen as the “best” number of terminal nodes. The misclassification
rate with the pruned tree is 2.67%.

The results of the whole.tree, whole.nnet and nnet.in.leaf methods are shown in
Table 3. For the iris.1 data, both the neural network classifier and the nnet.in.leaf
algorithm have good performance on the classification. The misclassification rates were
0%. Scaling does not affect the results. Since the whole.nnet method shared the same
technique for this data set with the nnet.in.leaf method, the nnet.in.leaf also gives a good
result, with an error rate of 0%. The ranking of the three methods is also shown in Table
3, which indicates that the nnet.in.leaf method and whole.nnet method are better than the
whole.tree method. In the UC Irvine database, the results collected from previous work
show that very low misclassification rates for this data are obtained and reported in many
publications. Dasarathy (1980) reports an errér rate of 0% for the setosa class and an

overall error rate of 2.67%.
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Figure 5: Cross-Validation of iris.1 Classification Tree
Data set : Classifiers: Whole.tree Whole.nnet Nnet.in.leaf
Iris. 1 misclassification | misclassification misclassification
error rate eITor rate eITor rate
Unscaled | Misclassification 2.67% 0% 0%
rate
Rank 2 1 1
Scaled Misclassification 2.67% 0% 0%
rate
Rank 2 1 1

Table 2: Misclassification Error Rates for iris.1 Data Set

2. WINE.1 DATA

Figure 6, the cross-validation plot of the wine.1 classification tree, shows that the
optimal size is 7 We use the optimal number to prune the tree. After finding the optimal
number of terminal nodes, we examine the results of the nnet.in.leaf method and the
whole.nnet method. The results shown in Table 3 indicate that there is a large
improvement for nnet.in.leaf, but not for whole.nnet. The whole.nnet method gives a

misclassification error rate for the wine.1 data set of about 1.7%.
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On the other hand, the nnet.in.leaf method produces a misclassification rate of
0%. The scaling of the wine.1 data set does not affect the results. In the UC Irvine
database, the misclassification rate attached by Aeberhard, Coomans and de Vel (1992) is
reported to be 0%. The report indicates that the classes are separable, and achieves 100%

correct classification. This error rate is determined by using the leave-one-out technique.
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Figure 6: Cross-Validation of wine.1 Classification Tree

Data set : Classifiers: Whole.tree Whole.nnet Nnet.in.leaf
wine.1 misclassification | misclassification misclassification
erTor rate error rate eITor rate
Unscaled | Misclassification 1.69% 1.7% 0%
rate
Rank 2 3 1
Scaled Misclassification 1.69% 1.7% 0%
rate
Rank 2 3 1

Table 3: Misclassification Error Rates for wine.1 Data Set

3. GLASS.1 DATA
Applying the tree-structured classifier to the glass.1 data gives very interesting

results. The error rate of 0% clearly shows that the tree-structured classifier correctly

29



classifies all of the data. The cross-validation of the data tree shown on the Figure 7 went
all the way down to the lower right corner with the optimal terminal node size of 6.

The misclassification error rates in Table 4 presented a comparison on the three
classifiers. The nnetin.leaf algorithm benefited from the combination of the tree-
structured classifier and the neural network classifier. The tree method gave a good result
for the glass.1 data set, and so did the nnet.in.leaf method. All misclassification rates
were 0%. For the whole.tree method, the performance of the whole.nnet method and the
nnet.in.leaf method had the same error rate. No misclassification rates for the glass.1 data

were available in the UC Irvine database.
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Figure 7: Cross-Validation of glass.1 Classification Tree

Data set: Classifiers: Whole.tree Whole.nnet Nnet.in.leaf
glass.1 misclassification | misclassification | misclassification
error rate error rate eITor rate
Unscaled | Misclassification 0% 0% 0%
rate
Rank 1 1 1
Scaled Misclassification 0% 0% 0%
rate
Rank 1 1 1

Table 4: Misclassification Error Rates for glass.1 Data Set
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4. VOWEL.1 DATA

In Figure 8, the optimal number of the terminal nodes for the vowel.1 data found
by cross-validating the classification tree is 43, which is large for a classification tree. A
classification tree with a large number of terminal nodes and a 22% misclassification rate
based on a data set with 11 classes does not carry much infonnation.

For the nnet.in.leaf method and the whole.nnet method, the results shown in Table
5 are more impressive. Compared with the whole.tree method, the results of the
misclassification rate for the whole.nnet method decrease to 13.5%. This improvement is
significant. But the improvement made by the nnet.in.leaf method is even more inspiring.
The misclassification rate decreases from 22% to 1.4% when the data are unscaled, and
decreases to 0.9% for scaled data. In the UC Irvine database, the best misclassification
rate for this data is about 34%, reported by Robinson (1989). He uses 16 different
classifiers, including the nearest neighbor and neural networks, but due to the
computational limits, the result was no better than 66% classification accuracy.
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Figure 8: Cross-Validation of vowel.1 Classification Tree
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Data set : Classifiers: Whole.tree Whole.nnet Nnet.in.leaf
vowel.1 misclassification | misclassification misclassification
eITor rate eITor rate eITor rate
Unscaled | Misclassification 21.21% 13.5% 1.4%
rate
Rank 3 2 1
Scaled Misclassification 21.21% 13.5% 0.9%
rate
Rank 3 2 1

Table 5: Misclassification Error Rates for vowel.1 Data Set
5. LETTER.1 DATA

The results of the data set letter.1 are a little different from those of the other data
sets. First, this data set is large, having 20,000 observations and 26 classes. It is not easy
for tree-structured classifiers to classify such a large data set and to give small
misclassification rates. Therefore, the error rate of this classification tree, about 38.3%,
was not very surprising. For the classification tree in this data set, a 38.3%
misclassification error rate means 7660 out of 20000 observations are misclassified. The
cross-validation of the data tree shown on the Figure 9 goes all the way down to the
lower right comner with the optimal number of terminal nodes equal to 66.

In Table 6, the misclassification rate is 5.5% for the nnet.in.léaf method and 21%
for the whole.nnet method. The reduction of the error rate from 38.3% to 5.5% strongly
indicates that the improvement of classification with the nnetin.leaf method is
significant. The whole.nnet method itself also has an improvement when compared to the
whole.tree method. We encounter some difficulty in using the nnet.in.leaf method on this
data due to the size of the data set and the large number of terminal nodes. Although the
nnet.in.leaf method gives significant improvement in classification, it is time-consuming.

For this particular data set, the very low misclassification error rate can not be achieved
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by either tree-structured classifiers or neural network classifiers alone. In the UC Irvine
database, P. W. Frey and D. J. Slate (1991) report that the lowest achieved

misclassification error rate is about 20%. Their research for the letter.1 data set uses

several variations of Holland-style adaptive classifier systems to learn to guess the letter
categories correctly. This rate is smaller than that of the tree-structured classifiers, and
about the same as the error rate with the neural network classifier in this thesis. However,

the nnet.in.leaf method has a much better misclassification rate than this 20% error rate.
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Figure 9: Cross-Validation of letter.1 Classification Tree

Data set : Classifiers: Whole.tree Whole.nnet Nnet.in.leaf
letter.1 misclassification misclassification misclassification
erTor rate erTor rate erTor rate
Unscaled | Misclassification 38.29% 21% 5.5%
rate
Rank 3 2 1
Scaled Misclassification 38.29% 21% 5.5%
rate
Rank 3 2 1

Table 6: Misclassification Error Rates for letter.1 Data Set
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6. SONAR.1 DATA

In Figure 10, the curve shows that the optimal number of terminal nodes with the
lowest deviance are 2, 3, 4, and 5. With the cross-validation of the sonar.1 data tree, the 2
terminal nodes are better for the nnet.inleaf method. The plot behaves differently
because the response of the data set has 2 classes.

In Table 7, the result of the whole.nnet method shows an improvement. The
misclassification error rate is reduced to 15.9%, compared to the classification tree error

rate of 24.04%. The result of the nnet.in.leaf method is even better; the misclassification

error rate decreases to 10.1%. In the UC Irvine database, the best result is a
misclassification error rate of 17%, which is about the same as the error rate that Karo !
(1998) achieves using the k-NN classifier. (His knn.in.leaf, scaling the data set and using

leave-one-out cross-validation, obtains a misclassification rate of 11.1%.)
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Figure 10: Cross-Validation of sonar.1 Classification Tree
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Data set : Classifiers: Whole.tree Whole.nnet Nnet.in.leaf
sonar.1 misclassification misclassification misclassification
error rate eITor rate error rate
Unscaled | Misclassification 24.04% 15.9% 10.1%
rate
Rank 3 2 1
Scaled Misclassification 24.04% 15.9% 10.1%
rate
Rank 3 2 1

Table 7: Misclassification Error Rates for sonar.1 Data Set

DIABETES.1 DATA

Figure 11 shows clearly that the optimal number of the terminal nodes is between

7 and 15. On the other hand, the lower error rate of about 11.07%, achieved with the 71

leaves, has a very high cross-validated deviance. Cross-validation of the diabetes.1 data

shows that the optimal size of 7 is better for the nnet.in.leaf method.

Table 8 shows the improvements made by the whole.nnet method and the

nnet.in.leaf method, compared to the whole.tree method. The neural network classifier

reduces the misclassification rate to 16.1%, compared to the classification tree error rate

of 22.79%. The nnet.in.leaf method improves the error rate by decreasing it to 14.5%

with unscaled data and all the way to 12.5% with scaled data. The best reported result for

this data set in the Statlog project is 22.3% in 12-fold cross-validation.
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Figure 11: Cross-Validation of diabetes.1 Classification Tree

Data set : Classifiers: Whole.tree Whole.nnet Nnet.in.leaf
diabetes.1 misclassification | misclassification | misclassification
erITor rate erTor rate eITor rate
Unscaled | Misclassification 22.79% 16.1% 14.5%
rate
Rank 3 2 1
Scaled Misclassification 22.79% 16.1% 12.5%
rate
Rank 3 2 1

Table 8: Misclassification Error Rates for diabetes.1 Data Set
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V. CONCLUSIONS AND FURTHER RESEARCH

A. CONCLUSIONS

In this thesis we propose the nnet.in.leaf method and compare its misclassification
rates with those of two other classifiers. We also examine the performance of this
proposed method. It is apparent that the nnet.in.leaf method is a viable first approach to
many classification problems, and it is also worth further investigation. Compared to tree-
structured classifiers and neural network classifiers, the performance of the nnet.in.leaf
method has some merits.

First, the nnet.in.leaf method always gives the lowest misclassification error rates
in our data sets. Table 9 shows that its performance always ranks first among the three
methods. Scaling of the data does not influence this ranking.

Second, this method is also capable of dealing with a large data set, such as the
letter data and the vowel data, which were used in the previous chapter. The letter.1 data
has 20,000 observations with 26 classes. The large number of observations makes some
common algorithms, like knn-in-leaf (mid-sized data, ranging from 200 to 1000 items),
less capable of dealing with it. However, the nnet.in.leaf method is not only able to
classify this data, but also gives a very encouraging misclassification error rate.

For the tree-structured classifiers and neural network classifiers, although we
cannot conclude that the latter generally does better than the former, we are confident that
the performance of the neural networks in these five out of seven data sets is better than
the tree’s performance.

However, the nnet.inleaf method also has limits and weakness. It is time-

consuming to run a data set with more than 50 classes (like the AF.1 data set, see
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Appendix C). In addition, use of weight decay and scaling to decrease the influence of
the random seed should make the nnet.in.leaf method be more stable. However, the

results of these eight data sets have shown that they made no difference.

Data set Scaling Whole.tree Whole.nnet Nnet.in.leaf
result’s Ranking | result’s Ranking result’s Ranking

iris. 1 Unscaled 2 1 1
Scaled 2 1 1
wine. 1 Unscaled 2 3 1
| Scaled 2 3 1
glass. 1 Unscaled 1 1 1
Scaled 1 1 1
vowel. 1 Unscaled 3 2 1
Scaled 3 2 1

letter. 1 Unscaled 3 2 1 '
Scaled 3 2 1
sonar. 1 Unscaled 3 2 1
Scaled 3 2 1
diabetes.1 Unscaled 3 2 1
Scaled 3 2 1

Table 9: Ranking of These Three Classifiers

B. FURTHER RESEARCH

We propose a composite classifier consisting of a classification tree and neural
networks. Since classification trees have been widely used in fields like medical
diagnostics and botany for many years, and neural networks have been widely used in

pattern recognition for a few decades, their combination is promising for classification in
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those fields. Further study of the composite estimation applied to data from these fields
needs to be done.

Because of its excellent performance, the nnet.in.leaf method might also be good
for the classification of the assignments of military personnel. Military assignments are
based on the personnel’s service, branch, rank, specialty, age, military performance,
education, sex, and so forth. (may be even including height, weight and S0 on). Those
attributes are very similar to those of the diabetes.1 data set we examined in chapter four.

Although this method performs well, it still needs to be improved. If the weight
decay and scaling could be adjusted so as to produce stable misclassification rates, this

method would be more reliable.
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APPENDIX A. S-PLUS CODE

This appendix contains the S-Plus code for functions used to test the classification
methods in this thesis. The heading for each function is its name, and the first comment
block provides a description of the purpose of the function. Other functions used included
standard S-Plus functions for classification trees (S-Plus, 2000), along with a library of
classification functions produced by Venables and Ripley (1997). These functions are
also described below.

A. Nnet FUNCTIONS

L. nnet

This function is a standard neural network algorithm for classifying a test set
against a known training set. It was part of a library of classification functions written by
Venables and Ripley. The function is used together with the predict() function to return
the classification of the test set instances. This function is widely used for pattern
recognition.
2. predict

This function is from the Venables and Ripley library. It pe&orms a test seton a
fitted model object from a training set. The function returns the predicted classifications

of the test set. It is heavily used in other functions.
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B. nnet.in.leaf Algorithm

nnet.in.leaf

function(original, n = 1:50, seed = 120, scale = T, threshold = 0.5, decay = 5e-4,
use.new.version =T)

{

#

# By Sam Buttrey and Chia-sheng Chen

#

# nnet.in.leaf: The overall strategy consists of two stages. Stage one: Classification tree.

#First of all, build a classification tree for the original data set. After that, with the

#classification tree, find out the optimal number of terminal nodes and the sub-data sets

#within each node by using cross-validation. Then, as soon as the optimal number of

#terminal nodes is found, prune the tree to the optimal number of nodes.

#Stage two: Neural networks. To begin with, scale the sub-data sets within each leaf.

#Perform neural networks with each sub-data set. Then, predict and sum up the errors.

#Finally, give the error rates of this nnet.in.leaf algorithm.

#

# Arguments:

# original: Full set of data

# n : Number of nodes in hidden layer

# seed : Random seed: if supplied, pass to set.seed()

# scale: If true, scale each sub-data set.

# decay: Set to non-zero value in the hoping of getting consistent results
# use.new.version: If "use.new.version" is TRUE, we use nnet.formula.new, which
# treats two-level factor responses the same as multi-level ones.
# threshold: Provided for prediction, usually set to be 0.5 for 2-class response.
# For more than 2-class response, we use max.col() to select the
# column which has the maximum value in it.

#

# return value : 1.) optimal number of terminal nodes in classification tree

# 2.) misclassification error rate in classification tree

# 3.) misclassification error rate in nnet.in.leaf

#

#

#

# For nnet.in.leaf
# We want to divide this algorithm into several steps:
# Step 1: Call .First() function from S-Plus Library to set nnet function ready to use. We
#define some variables for future use. Define variable opt.treesize for the result of cross
#validating the tree we get from the original data set, and define variables total.error.num
#and total.error.denom as the total number of errors of the numerator and denominator.
#Then rename the original data set to data.set. After that, we find the tree for the data set
#with the tree() function.

First()

opt.treesize <- 0

total.error.num <- total.error.denom <- 0
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T

data.set <- original

assign("data.set", data.set, frame = 1)

data.tree <- tree(data.set[, 1] ~ ., data = data.set[, -1])

assign("data.tree”, data.tree, frame = 1)
#The second step: we need an optimal number of terminal nodes for pruning the tree we
#created above. But the problem is we couldn’t make sure that the number of terminal
#nodes we obtained from above is optimal. Therefore, we want to find the best size of the
#tree by cross-validating the tree with the function cv.tree(). Then, from this cross-
#validation, which shows the size of the tree, deviance of each number of terminal
#nodes, and other information, we want to find the lowest deviance which we associate
#with the “best” size of the tree. After we obtain the “best” size, we prune the tree. Then,
#we have the lowest deviance and the optimal size of the tree.
#

data.cv <- cv.tree(data.tree, FUN = prune.tree)

assign("data.cv", data.cv, frame = 1)

opt.treesize <- data.cv$size[order(data.cv$dev)[1]]

assign("opt.treesize", opt.treesize, frame = 1)

cat(" optimal tree size is ", opt.treesize, 1, "\n")

cat(" ---- Butwe'll use ", opt.treesize, 1, " ---\n")

data.prune <- prune.tree(data.tree, best = opt.treesize, 1)

assign("data.prune”, data.prune, frame = 1)
#
#The third step: before we are ready for running the nnet method, we need to have two
#pieces of information on hand. One is to have the sub-data sets from each terminal node.
#When we prune the tree, we get the best number of the terminal nodes and the sub-data
#sets come with each node by finding the “leaf” of the pruned tree. The other is to have
#the optimal number of terminal nodes or leaves. The optimal number of leaves should
#be equal to the “best” size of the tree we have found by cross-validating. We also could
#double check by looking at the length of the optimal number of leaves.

data.leaf <-
as.numeric(dimnames(data.prune$frame)[[1]][data.prune$frame[, "var"] == "<leaf>"])

k.leaves <- length(data.leaf)

cat(" The value of k.leavesis: ", "\n")
#
#The fourth step: save the unique response values. In neural networks, the nnet function
#treats the data set with 2 levels of response slightly differently from others. Therefore,
#we distinguish the 2-level response data set from other level response data set below
#when running nnet function.
#

resp.levels <- levels(data.set[, 1])
#
#The fifth step: this step is the most important step in this algorithm. Here, we want to
#conduct neural networks within each leaf of the tree. Since we have the optimal number
#of leaves of the tree, we want to nnet in the leaf one after another. Therefore, first, we

43



#locate each node and its own data set (sub-data set of the original). For each leaf, we
#want to find out the error rate of its own by selecting certain different numbers of nodes
#in hidden layer and certain different numbers of random seeds. To stabilize the
#observations of the sub-data set, we scale each sub-data set before they run through nnet
#function. For each for-loop, a detailed description follows.

#
for(k in 1:k.leaves) {
sub.leaf k <- data.set[identify(data.prune, data.leaffk]), ]
if(do.scale ==T) {
num.cols <- sapply(sub.leaf .k, is.numeric)

sub.leaf k[, num.cols] <- as.data.frame(scale(sub.leaf k[, num.cols]))
}
assign("sub.leaf k", sub.leaf k, frame = 1)
min.error.rate <- 1.1

#

#In neural networks, the number of nodes in the hidden layer needs to be assigned.
#Different assigned number of the nodes could yield different results along with the
#number of random seed. A number of trials of the combination of a single number of
#nodes in the hidden layer and a single number of random seeds could be tedious as well
#as time-consuming. Therefore, for-loops for the numbers of nodes in the hidden layer
#and the numbers of random seeds could be more effective and could always obtain the
#best results. The worst case complexity would be (k*i*j) in this algorithm.
#
#
#Within the for-loop of random seeds, we sample each sub-data set as training set, and
#the rest is test set. Recall that nnet function treats the number of levels of a data response
#slightly differently. So we created another nnet function called nnet.formula.new for the
#purpose of dealing with 2-class response when we regard it as 2-level response data set.
#0therwise, we would treat it as multi-class response data set and apply the nnet
#function, when the use.new.version method is false.
#
# .
#Within nnet or nnet.formula.new method, the sub-data set goes through the process one
#time with one single number of nodes in the hidden layer and a single number of
#random seeds. The one-time process continues.
#
for(iinn) {
for(j in seed) {

q<-]

set.seed(q)

assign("q", q, frame = 1)

sub.samp <- sample(nrow(sub.leaf k), size =
round(nrow(sub.leaf k) * 0.67, 1), replace = F)
assign("sub.samp”, sub.samp, frame = 1)
if(use.new.version == F)
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out <- nnet(sub.leaf k[, 1] ~ ., data = sub.leaf k[, -1],
size =1, decay = decay, maxit = 1000, subset =
sub.samp, trace = F)

else out <- nnet.formula.new(sub.leaf k[, 1] ~ ., data=
sub.leaf k[, -1], size =i, decay = decay, maxit = 1000,
subset = sub.samp, trace = F)

assign("out", out, frame = 1)

#

#When the one-time process comes to the prediction part, it should always have had an
#nnet or nnet.formula.new output. The one-time process checks whether the sub-data set
#has a 2-class response. If it does, the prediction method predicts the results of the test set
#with the output of nnet function. Then it checks its probability with a threshold
#argument, which is usually set to be 0.5. If not, the prediction method will predict the
#probability of data points of each column with the output from the training set and test
#set and then pick up the columns that contain the maximum probability compared with
#others in the same rows. After that, we give the prediction results.
#
if(use.new.version == F && length(levels(sub.leaf k[, 1]))

==2) {

pred <- predict(out, sub.leaf k[ - sub.samp, ])

pred <- pred > threshold

assign("pred", pred, frame = 1)

}
else {

pred.mat <- predict(out, sub.leaf k[ - sub.samp, )

pred <- dimnames(pred.mat)[[2]][max.col(pred.mat)]

assign("pred”, pred, frame = 1)

pred <- factor(pred, levels = resp.levels)

}
#

#

#Now that we have the outputs from the nnet or nnet.formula.new function and their
#prediction results, we want to form a table to see the classification accuracy of the one-
#time process. By looking at the results on this table, we want to calculate the
#misclassification error rate. We know that those numbers on the diagonal represent the
#correct classifications. The rest are errors.

#

#

#For a single leaf, we simply sum up all numbers as a total, and sum up the numbers on
#the diagonal as an accurate number. Then, the difference of the total and the accurate

#number is divided by the total and the result is the error rate of that single leaf.
#

#

#For a whole data set, what we are doing is a little different. First of all, we have to
#determine the minimum error rate in the single leaf. Within a single leaf, we have i*j
#one-time processes. The one error rate we prefer is the smallest. After collecting a
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#number of minimum error rates from different leaves, we sum up all of the numbers on
#the diagonal given by those one-time processes that contain the minimum error rates.

#

#
#

confuse <- table(sub.leaf k[ - sub.samp,
dimnames(sub.leaf k)[[2]][1]], pred)

print(confuse)
assign("confuse”, confuse, frame = 1)
sum.confuse <- sum(confuse)
assign("sum.confuse”, sum.confuse, frame = 1)
error.rate <- (sum.confuse -

sum(diag(confuse)))/sum.confuse
error.num <- (sum.confuse - sum(diag(confuse)))
error.denom <- sum.confuse
assign("error.rate”, error.rate, frame = 1)
if(min.error.rate > error.rate) {

min.error.rate <- error.rate

min.error.num <- error.num

min.error.denom <- error.denom

}
}

cat("\n  Giving minimum error rate in the node : ", round(min.error.rate,
3), "\n")

Cat("\n", Il\nll)

total.error.num <- total.error.num + min.error.num

total.error.denom <- total.error.denom + min.error.denom

#Ihe final step: report the results. We would like to compare the results we obtain from
#this algorithm with other results gathered by previous works. Here we want to report:
# 1.) The optimal size of tree

# 2.) The random seeds we assign to the data set

# 3.) The summary of data classification tree

# 4.) The total number of numerator errors

# 5.) The total number of denominator errors

# 6.) The misclassification error rate of the data

#
#

Cat("******************************************************* " "\n")
’

cat("

** THE RESULTS OF NEURAL NETWORKS WITHIN

CLASSIFICATION TREE SIMULATION **",  "\n")

cat("\n
cat("\n
cat("\n
cat("\n

optimal tree size is : ", opt.treesize, "\n")

The number of nodes in the hidden layeris : ", n, "\n")
The number of seed is : ", seed, "\n")

The summary of this data classification tree is: ", "\n")
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print(summary(data.prune))

cat("\n  The simulation produces a total no. of errors and a mean error rate:",
"n")

cat("\n  Giving total no. of numerator errors : ", total.error.num, "\n")

cat("\n  Giving total no. of denominator errors : ", total.error.denom, "\n")

mean.error.rate <- total.error.num/total.error.denom

assign("mean.error.rate”, mean.error.rate, frame = 1)

cat("\n  Giving mean error rate : ", round(mean.error.rate, 3), "\n")

C. whole.tree Algorithm

whole.tree

whole.tree <- function(original)

{

# By LTC Chen, Chia-sheng

#

# whole.tree: The purposes of this algorithm are to obtain an original tree of the original

#data, a pruning tree, a cross-validation plot, the optimal size of the terminal nodes, and

#the misclassification error rate of the tree. The outputs of these algorithm serve as basic
#inputs for nnet.in.leaf algorithm.

#

# Arguments:

# original: full set of data
#

# return results and value :

1.) Original data tree

2.) Cross-validation plot

3.) Pruned data tree

4.) Optimal number of terminal nodes in classifications tree
3.) Misclassification error rate of the classification tree

HoH I H H H H

# The overall strategy of this algorithm consists of several steps: First of all, build a
#classification tree for the original data set. Secondly, cross-validate the tree. Next, find
#the optimal number of terminal nodes and the sub-data. After that, as soon as the
#optimal number of the terminal nodes is found, prune the tree with the optimal number
#of nodes. Then, report the results.

#

#

# Before we put the original data set into this algorithm, we arbitrarily relocate the
#response of the original data set on the first column. Then, we define some variables for
#future use. Define variable opt.treesize for the result of cross-validating the tree we get
#from the original data set, and define variables. After that rename the name of the
#original data set as a general term in this algorithm. Now, we are ready for the tree of
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#the data set. We use the tree() function to find the data tree and use the post.tree()
#function to send the tree graph to H drive in the computer for later use.
#

opt.treesize <- 0

data.set <- original

assign("data.set”, data.set, frame = 1)# Create a tree for this data set

data.tree <- tree(data.set[, 1] ~ ., data = data.set[, -1])

assign("data.tree", data.tree, frame = 1)

post.tree(data.tree, file = “H:/OriginalTreeOf TheDataSet.ps”)
#
#
#Then, we need an optimal number of terminal nodes for pruning the tree we
#created above. But the problem is we couldn’t make sure that the number of terminal
#nodes we obtained from above is optimal. Therefore, we want to find the best size of the
#tree by cross-validating the tree with the method cv.tree(). Then, from this cross
#validation, which shows the size of the tree, deviance of each “best” size of terminal
#nodes, and other information, we want to find the lowest deviance with the “best” size
#of the tree. After we obtain the “best” size, we prune the tree. Then, we have the optimal
#size of the terminal nodes with the lowest deviance. After cross-validating the original
#tree, we make a plot to show the cross-validation and a graph for pruning tree.
#
#

data.cv <- cv.tree(data.tree, FUN = prune.tree)

plot(data.cv)

assign("data.cv", data.cv, frame = 1)

opt.treesize <- data.cv$size[order(data.cv$dev)[1]]

assign("opt.treesize", opt.treesize, frame = 1)

cat(" optimal tree size is ", round(opt.treesize, 1), "\n")

cat(" ---- But we'll use ", round(opt.treesize, 1), " ---\n")

data.prune <- prune.tree(data.tree, best = round(opt.treesize, 1))

assign("data.prune”, data.prune, frame = 1)

post.tree(data.prune, file = “H:/PruningTreeOf TheDataSet.ps”)

summary(data.tree)

summary(data.prune)
}
#
#
# Finally, we want to report the results on the original tree summary as well as the pruned
#tree summary. These two summaries are shown as a comparison for the differences
#between them. The results of the pruned tree summary will be used as inputs for the
#nnet.in.leaf algorithm.
#
#
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D. whole.nnet Algorithm

whole.nnet

function(original, n = 30, seed)

{

# By LTC Chen, Chia-sheng

#

# whole.nnet: The purposes of this algorithm are to obtain a neural network output plot of
#the original data, and the misclassification error rate of the neural networks. The output
#of this algorithm serves as a final result for nnet.in.leaf algorithm.

#

# Arguments:

# original: full set of data

# n: number of nodes in the hidden layer of the neural networkclassifier
# seed: if supplied, pass to set.seed()

#

# return results and value :

# 1.) Neural network plot

# 2.) Misclassification error rate of the classification tree

#

# The overall strategy of this algorithm consists of several steps: First of all, use the
#original data set to randomly create a training set and a test set. Use the training set to
#run the neural network classifier and hold the output. Next, decide the level of the
#response of the original data set (or training set; either one will do.) After that, use the
#output of the nnet function and the test set to predict the misclassification error rate. The
#last, give the neural network plot and the result of the error rate.
#
#In this neural network classifier algorithm, a different number of nodes in the hidden
#layer is able to obtain different result, and so is the number of random seeds. Therefore,
#we pick up a combination of these two numbers which results in the lowest error rate.
#
#Now when we get started with this algorithm, we have to call the nnet function from S-
#Plus library first. In a pre-built function call ”.First()”, we specified the call of nnet
#function from the S-Plus library and an options function to extend the object size to a
#bigger range. Then set random seed, if necessary.
M :
First()

if('missing(seed)) set.seed(seed)
#
#Rename the original data set as a common term for general use. Sample the original data
#and name it as the training set and the rest is the test set. We use the training set to run
#the neural networks and save the output. In the nnet function, we set decay to 5e-4, the
#parameter for weight decay to 0.0005; if not specified, default equal to 0.;set maxit =
#1000: the maximum number of iterations equal to 1000, if not specified, default is 100.
#
#
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data.set <- original
assign("data.set", data.set, frame = 1)
sub.samp.1 <- sample(nrow(data.set), size = round(nrow(data.set) * 0.67, 1),
replace = F)
assign("sub.samp.1", sub.samp.1, frame = 1)
cat("nnet(data.set[,1] ~ ., data = data.set[, -1], size = n, decay = 0.005, maxit =
1000, subset = sub.samp.1)\n")
NeuralNetworkOutput <- nnet(data.set[, 1] ~ ., data = data.set[, -1], size =n,
decay = 0.005, maxit = 1000, subset = sub.samp.1)
assign("NeuralNetworkOutput ", NeuralNetworkOutput, frame = 1)
plot(NeuralNetworkOutput)
cat("\nNow predicting: confusion matrix is\n")
#
#
#Do prediction on the test set, then find the number of the response. If the response has 2
#classes, we set a threshold, 0.5, to the output of the prediction. If the response has more
#than 2 classes, we take the maximum number out of the prediction matrix by rows and
#columns. Then we set a matrix table with the numbers correctly predicted displayed on
#the diagonal and the error numbers on the upper and lower triangles.
#
#
pred <- predict(NeuralNetworkOutput, data.set[ - sub.samp.1, ])
if(length(levels(data.set[, 1])) == 2) {
pred <- pred > 0.5
print(pred)
}
else {
pred <- max.col(pred)
}
confuse <- table(data.set[ - sub.samp.1, dimnames(data.set)[[2]][1]], pred)
print(confuse) #
#
# To get the error rate, we sum up all numbers on the matrix table as a total, and sum up
#all the numbers on the diagonal as the correct prediction number. Then the total number
#subtracts the correct prediction number to get the error number. After that, we divide the
#error number by the total number, and we have the error rate. And print it out.
#
sum.confuse <- sum(confuse)
error.rate <- (sum.confuse - sum(diag(confuse)))/sum.confuse
cat("\nGiving an error rate of ", round(error.rate, 3), "\n")
invisible(return(error.rate))

}
#

# In chapter 3 of this thesis, we use a modification of the whole.nnet function as part of
#the nnet.in.leaf algorithm. The differences are the input arguments and calculation of
#the misclassification error rates. In the whole.nnet algorithm, we use a single number of
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#nodes in the hidden layer and a single number of random seeds. In the nnet.in.leaf
#algorithm, the number of nodes in the hidden layer is set to be a series of numbers and
#runs with a for-loop. Within the for-loop running with a set of numbers, another for-loop
#is set for the random seeds. Therefore, within a single leaf, we have two for-loops to
#search for error rates. From those error rates we pick up the smallest one and save it as
#the error rate for that particular leaf. Next, we collect the misclassification error rates
#from each leaf by this way. After that, sum up the total error numbers and divide the
#total error numbers by the total numbers we collect. Then, the final result is the

#misclassification error rate for this data by using nnet.in.leaf algorithm.
#

E. Examples for Applications to Each Algorithm

The code is an example of how to apply the nnet.in.leaf method to a data set.
There are seven arguments needed to be considered for this algorithm. They are the data:
set, the number of nodes in the hidden layer, the random seeds, the scaling, the prediction
threshold, the weight decay, and the use of different nnet functions determined by
whether the response is 2 levels.

> nnet.in.leaf (glass.1, n = (1 : 10), seed = ((1:10)*10), scale = T, threshold =

0.5, decay = 5e-4, use.new.version = T)

The following code is an example of how to apply the whole.tree method to a
data set. The only one argument needed is the data set.

> whole.tree (glass.1)

The following code is an example of how to apply the whole.nnet method to a
data set. There are three arguments required for this algorithm. They are the data set, the
number of nodes in the hidden layer, and the random seed.

> whole.nnet (glass.1, n = 7, seed = 100)
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APPENDIX B. RAW RESULTS

The results below are reported by data sets. Each data set was examined in a raw
unscaled form and in a scaled form where each variable was normalized to mean 0 and
standard deviation 1. For each data set, the following is a description of what will be
reported:

1. Data set statistics including the size of the data set, the number of classes, aiong with
a description of what the class represents, and the number of independent variables.
2. Classification results for each method as follows:
a. Misclassification Error Rate. An error rate reported by the
whole.tree, whole.nnet, or nnet.in.leaf method.
b. Optimal Number of Terminal Nodes. A number that represents

the “best” size of a tree.
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Optimal Whole.tree Whole.nnet Nnet.in.Jeaf
Data set : no. of Classifiers: misclassification | misclassification | misclassification
terminal error rate EITOr rate eITor rate
nodes:
Misclassification 0.02667 0 0
Jris.1 4 rate (Unscaled)
Misclassification 0.02667 0 0
rate (Scaled)
Misclassification 0.0169 0.017 0.0
Wine.1 7 rate (Unscaled)
Misclassification 0.0169 0.017 0.0
rate (Scaled)
Misclassification 0.0 0.0 0.0
Glass.1 6 rate (Unscaled)
Misclassification 0.0 0.0 0.0
rate (Scaled)
Misclassification 0.2121 0.135 0.014
t aled
Vowel.] 43 rate (Unscaled)
Misclassification 0.2121 0.135 0.023
rate (Scaled)
Misclassification 0.3829 0.21 0.055
rate (Unscaled)
Letter.1 66
Misclassification 0.3829 0.21 0.055
rate (Scaled)
Misclassification 0.2404 0.159 0.101
rate (Unscaled)
Sonar.1 2
Misclassification 0.2404 0.159 0.101
rate (Scaled)
Misclassification 0.2279 0.161 0.145
. rate (Unscaled)
Diabetes. 1 7
Misclassification 0.2279 0.161 0.125
rate (Scaled)

Table 10. Raw Results for Seven Data Sets
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APPENDIX C. WHOLE.NNET METHOD RESULT EXAMPLES
A. EXAMPLES RESULTED FROM WHOLE.NNET METHOD WITH
FOLLOWING DATA SETS
These examples are the misclassification results of several data sets using the
whole.nnet classifier. The first argument is the name of a data set, the second is the
number of nodes in the hidden layer, and the third argument is the random seed, which
we set to 100.
The result is a form of a square matrix table. The numbers on the diagonal of the
matrix are those correct numbers of the classification. The numbers other than on the

diagonal are misclassified numbers. The first column and the first row of the square

matrix table are listed either as ordered numbers or as words representing the classes of

that data.
The last line of the example is the given error rate of the data set in terms of the

given number of nodes in the hidden layer and the random seed.

a. whole.nnet(iris.1, 3, 100)

1 2 3

Setosa 17 0 0
Versicolor 0 16 0
Virginica 0 0 17

Giving an error rate of 0

This example is the result of the iris.1 data. There are three classes: Setosa,

Versicolor, and Virginica. The number of nodes in the hidden layer is three, and the
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random seed is 100. Clearly, the whole.nnet method gives a misclassification error rate of

0.

b. whole.nnet(wine.1, 3, 100)

Type 1 Type 2 Type 3

Type 1 20 0 0
Type 2 0 21 1
Type 3 0 0 17

Giving an error rate of 0.017

This example is the result of the wine.1 data. There are three classes (Type 1,
Type 2, and Type 3) which indicate three different classes of wine. The number of nodes
in the hidden layer is three, and the random seed is 100. The whole.nnet method gives a
misclassification error rate of 0.017.

¢. whole.nnet(glass.1, 10, 6000)

SO0 W N

OO O OO K
OO OOk OoON
OO oOoOuUTo oW
OO JO OO
oOWwWoooocwm
VOO OO OO

Giving an error rate of 0

This example is the result of the glass.1 data. There are seven classes (1 through
7) which represent different types of glass. The number of nodes in the hidden layer is
ten, and the random seed is 6,000. Obviously, the whole.nnet method gives a

misclassification error rate of 0.0.
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d. whole.nnet(vowel.1, 10, 1000)

10

1 2 3

0

25
1 125

0

0
30

0
1
0

0
0

0 22 4

0

0 26 1 0 O
1
1 121

0
0

2

0 31

0
0

0

0
26

0
0

2

2
25

2 27

25

10

0.135

Giving an error rate of

This example is the result of the vowel.1 data. There are eleven integer classes (0

through 10) which index different vowels. The number of nodes in the hidden layer is

ten, and the random seed is 1,000. Obviously, the whole.nnet method gives the

misclassification error rate of 0.135.
e. whole.nnet(letter.1, 10, 200)
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Giving an error rate of

.21

0
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This example is the result of the letter.1 data. There are 26 classes (A through Z)
which are the targets to be identified. The number of nodes in the hidden layer is ten, and
the random seed is 200. It is obvious that the whole.nnet method gives the
misclassification error rate of 0.21.

f. whole.nnet(sonar.1, 10, 200)

FALSE TRUE
M 27 3
R 8 31

Giving an error rate of 0.159

This example is the result of the sonar.1 data. There are two classes, representing
sonar signals bounced off a metal cylinder and those bounced off a roughly cylindrical
rock. M and R). The FALSE and TRUE shows that the threshold is set to 0.5. The
number of nodes in the hidden layer is ten, and the random seed is 200. Clearly, the
whole.nnet method gives the misclassification error rate of 0.159.

g. whole.nnet(diabetes.1, 7, 7000)

FALSE TRUE
0 148 27
1 14 65
Giving an error rate of 0.161
This example is the result of the diabetes.l data. There are two classes, one
representing people having diabetes and zero for those who don’t have diabetes. The
FALSE and TRUE shows that the threshold is set to 0.5. The number of nodes in the

hidden layer is seven, and the random seed is 7000. It is obvious that the whole.nnet

method gives the misclassification error rate of 0.161.
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B. THE ERROR RATES FOR EXAMPLE OF NEURAL NETWORK

CLASSIFICATION IN CHAPTER 2

Misclassification Error Rates Resulted from wine.1 Data Set Using Neural Network
Classifier whole.nnet

n Minimum Higher n Minimum Higher
Error rate error rate Error rate error rate

1 0.11864 16 0.05085

2 0.08475 17 0.0339

3 0.01695 18 0.0339

4 0.01695 19 0.01695

5 0.05085 20 0.01695

6 0.05085 21 0.05085

7 0.01695 22 0.0339

8 0.01695 23 0.0339

9 0.01695 24 0.01695

10 0.01695 25 0.01695

11 0.01695 26 0.01695

12 0.0339 27 0.01695

13 0.05085 28 0.01695

14 0.01695 29 0.01695

15 0.05085 30 0.01695

Table 11: These Error Rates Gathered by Using whole.nnet Method with Random Seed 100
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To see the application of the whole.nnet method, we tried different numbers of
nodes in the hidden layer between 1 and 30 nodes with random seed 100. In Table 11, the
misclassification rates did not remain the same when the random seed was fixed.

C. THE AF.1 DATA SET

The AF.1 data set is collected to estimate the cost of purchasing different types of
military aircraft. Based on 920 observations, there are 11 attributes associated with the
cost estimation. The response is the aircraft model. The major attributes are source,
location, year, cost, fuel, and personnel pay. The response has 50 classes. The number of
classes of the response is too large to fit the nnet.in.leaf method. When we applied the
data to the tree function, it didn’t work, either. The tree function could not handle such a

large number of classes as in the response of the AF.1 data.
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